On positive solutions for a class of nonlocal problems

نویسنده

  • Guowei Dai
چکیده

In this paper, we study a class of nonlocal semilinear elliptic problems with inhomogeneous strong Allee effect. By means of variational approach, we prove that the problem has at least two positive solutions for large λ under suitable hypotheses about nonlinearity. We also prove some nonexistence results. In particular, we give a positive answer to the conjecture of Liu-Wang-Shi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Nonlinear Nonlocal Diffusion Equations

This is a study of a class of nonlocal nonlinear diffusion equations (NNDEs). We present several new qualitative results for nonlocal Dirichlet problems. It is shown that solutions with positive initial data remain positive through time, even for nonlinear problems; in addition, we prove that solutions to these equations obey a strong maximum principle. A striking result shows that nonlocal sol...

متن کامل

Positive solutions of third-order nonlocal boundary value problems at resonance

*Correspondence: [email protected] 1Department of Basic Teaching, Tangshan College, Tangshan, Hebei 063000, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we investigate the existence of positive solutions for a class of third-order nonlocal boundary value problems at resonance. Our results are based on the Leggett-Willi...

متن کامل

On nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$

‎Using Nehari manifold methods and Mountain pass theorem‎, ‎the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.

متن کامل

On a Class of Nonlocal Elliptic Problems with Critical Growth

This paper is concerned with the existence of positive solutions to the class of nonlocal boundary value problems of the Kirchhoff type − [ M (∫ Ω |∇u|2 dx )] Δu = λ f (x,u)+u in Ω,u(x) > 0 in Ω and u = 0 on ∂Ω, where Ω ⊂ RN , for N=1,2 and 3, is a bounded smooth domain, M and f are continuous functions and λ is a positive parameter. Our approach is based on the variational method.

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012